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Communications 
Cyclization of 5-Hexenyllithium to 
(Cyc1opentylmethyl)lithium’ 

Summary: The kinetics of cyclization of 5-hexenyllithium 
(1) to (cyclopentylmethy1)lithium (21, determined by direct 
observation of the isomerization using lH NMR, are 
characterized by AHt = 11.8 f 0.5 kcal/mol and AS* = 
-30 f 2 eu. 

Sir: The 5-hexenyl radical is known to cyclize rapidly (k - lo5 s-l at 0 in essentially quantitative yield to the 
cyclopentylmethyl radicaP4 and this behavior has led to 
the widespread use of 5-hexenyl substrates as probes for 
radical intermediates in reactions suspected of proceeding 
via single-electron transfer The observation of 
products containing the cyclopentylmethyl moiety from 
reactions employing 5-hexenyl substrates has often been 
taken as prima facie evidence for the intermediacy of a 
5-hexenyl r ad i~a l .~  Clearly, such a conclusion is valid only 
to the extent that other intermediates can be shown not 
to undergo rapid rearrangement to cyclopentylmethyl- 
containing products.8 Although it is well-known that 
various organometallic derivatives of the 5-hexenyl system 
cyclize to cyclopentylmethyl organometallics,”12 the con- 
ventional wisdom has been, with few exceptions,4J1J3 that 
such cyclizations are slow relative to the rapid radical- 
mediated process3v4 and other reactions that consume an- 
ions. Quantitative kinetic data for relevant organometallic 
cyclizations are sparse but the sluggish isomerization of 
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Figure 1. ‘H NMR spectrum (500-MHz) of the CH,Li region 
during the isomerization of 1 to 2 at 0 “C in n-C5H12-Eh0 solution. 
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Figure 2. Typical plot of the relative areas of the CHzLi protons 
of 1 (A) and 2 (0) as a function of time. Data from experiment 
at  20 OC in n-C5H12-Et20. The solid line represents the least- 
squares fit of the data. 

5-hexenyl Grignard reagentslO [i.e., t, = 20 h for H2C= 
CHCH2CH2CH2CH2MgC1 - c-C,H,dH2MgC1 in TWF at 
100 O C I 1 O  would seem to confirm this view. 

Prompted by the results of our recent studies of the 
metal-halogen interchange reaction,14 we have investigated 
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Table I. First-Order Rate Constants and Activation 
Parameters for the Cyclization of 5-Hexenyllithium ( 1 )  to 

(Cyclopentylmethy1)lithium (2)" -12 k 
J \ 

temp, "C 104k, s-1 AH*, kcal/mol AS*, eu 
-11.1 1.75 f 0.02 11.8 f 0.5 -30 f 2 

-9.4 1.77 f 0.02 
-0.5 4.18 f 0.03 
0.8 5.71 f 0.09 
9.4* 10.3 f 0.1 

20.OC 20.6 f 0.2 

OErrors are reported as standard deviations. "Average of two 
experiments. Average of three experiments. 

the kinetics of the cyclization of 5-hexenyllithium 
(CH2=CHCH2CH2CH2CH2Li, 1)15 to (cyclopentyl- 
methy1)lithium (c-C,H,CH,Li, 2)15 by direct observation 
of the organolithiums using lH NMR spectroscopy. The 
results of these experiments are summarized in Table I. 

Treatment of a 0.5 M solution of 6-iodo-1-hexene in 
n-pentane-diethyl ether (3:2 by volume)14 with 2-equiv of 
freshly prepared tert-butyllithium16 (t-BuLi) at -78 "C 
under argon affords an essentially quantitative yield of 1. 
The isomerization of 1 to 2 was monitored at  four tem- 
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- 

n - C s  H,  2- E 120 
1 

2 
peratures between -10 "C and +20 OC by NMR observa- 
tion" of the CH2Li region of the spectrum (Figure 1). The 
CH2Li protons of 1 appear as a triplet at 6 -1.11 (J = 8.67 
Hz) while those of 2 appear as a doublet a t  6 -0.95 (J = 
7.18 Hz). This latter assignment was confirmed by syn- 
thesis of 2 in quantitative yield upon treatment of a so- 
lution of cyclopentylmethyl iodide in n-C,H12-Et20 (3:2 
by volume) with 2 equiv of t-BuLi a t  -78 "C.14 

The conversion of 1 to 2 is a clean first-order process 
when care is taken to exclude moisture and oxygen from 
the reaction mixture. In contrast to the behavior of other 
5-hexenylalkalis in ethereal solvents,13 there was no evi- 
dence for prototropic rearrangement of l to a l-propylallyl 
species. The cyclization was followed through 3-4 half- 
lives by integration of the CH2Li patterns of 1 and 2. 
These e' . were fit by nonlinear least-squares analysis to 
the standard exponential form of the first-order rate ex- 
pression (Figure 2) to give the rate constants reported in 
Table I. Activation parameters were determined by ap- 
plication bf the Eying equation: a linear plot of In (k/7') 
vs. 1 /T gave (Figure 3) AH* = 11.8 kcal/mol and AS* = 
-30 eu. The corresponding Arrhenius parameters were also 
determined: E,  = 12.6 f 0.6 kcal/mol and In A = 15.5 f 
1.2. 

The data in Table I indicate that although the conver- 
sion of 1 to 2 is very much slower (by a factor of 10alO'O) 
than the cyclization of the 5-hexenyl r a d i ~ a l , ~ - ~  it is, as 
suggested by the qualitative observations of Oliver and 
co-workers,'l much faster than the analogous isomerization 
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Figure 3. Plot of In ( k / T )  vs. 1/T (K) for the conversion of 1 
to 2. Data from Table I. 

of the 5-hexenyl Grignard.lo Indeed, nonnegligible quan- 
tities of product containing the cyclopentylmethyl group 
may arise from cyclization of 1 to 2 since the half-life for 
this process at temperatures above 0 "C (tlI2 - 23 min at 
0 "C, 5.5 min at  23 "C) i s  short relative to the time scale 
of many experiments that seek to probe for radical in- 
termediates. Be that as it may, the 5-hexenyl-to-cyclo- 
pentylmethyl cyclization remains a useful probe for radical 
intermediates even in reactions that produce 1,14 provided 
account is taken of the relative rates of isomerization of 
the radical and the organolithium. 

The results noted above, and those recently reported by 
Garst and Hines for (l-methyl-5-he~enyl)sodium,~~ serve 
to emphasize the caveat that observation of products 
containing the cyclopentylmethyl group from reactions 
employing 5-hexenyl substrates is not sufficient evidence 
to establish the intermediacy of radicals particularly when 
organometallic species may be involved. 
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Stereochemistry of Crotylboronate Additions to 
a,p-Dialkoxy Aldehydes 

Summary: The stereochemistry of the reactions of cro- 
tylboronates 1-4 with chiral a,/3-dialkoxy aldehydes 5 and 
6 is described. 

Sir: A transformation with broad significance for control 
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